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Bayesian approach summary

● P(obs|M) – likelihood, P(M) – prior, P(M|obs) – posterior 
probability

● Calculate marginal distributions:

P(M|obs )∼P (obs|M )P(M )

p(ml)=
∬

m1 ..mK∖m l

P(M|obs )dM

∬
m1 ..mK

P(M|obs)dM
p(ml ,mq)=

∬
m1 ..mK ∖m lmq

P(M|obs)dM

∬
m1 ..mK

P(M|obs )dM
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Bayesian approach summary

● P(obs|M) – likelihood, P(M) – prior, P(M|obs) – posterior 
probability

● Calculate marginal distributions:

P(M|obs )∼P (obs|M )P(M )

p(ml)=
∬

m1 ..mK∖m l

P(M|obs )dM

∬
m1 ..mK

P(M|obs)dM
p(ml ,mq)=

∬
m1 ..mK ∖m lmq

P(M|obs)dM

∬
m1 ..mK

P(M|obs )dM

● How to calculate marginal distribution if M has many 
dimensions?
– E.g. Fermi 4FGL catalog has 7195 sources, full sky model 

has more than 10k parameters



4

Markov chains
● Stochastic process – sequence of random 

variables
● Markov chain – special type of stochastic 

process
– the probability of occurrence of one or 

another outcome at step n+1 depends only 
on the state of the system at step n

● q1,..,qn-1,qn,..
– Probability distribution function p(qn) is 

completely determined by qn-1
● Note: the requirement of no memory is often 

relaxed, but these chains are not Markovian

Andrey Andreyevich 
Markov, 1856-1922
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Markov chains: discrete case with 
finite number of states

● Provide probability to move 
from one state to another

● Example: one dimensional 
random walk (p=q=0.5)

● Probability of each state may be defined as a vector
● Transition matrix P: Px gives the probability of each 

state at the next step
● P2x – probability

after 2 steps
● Pnx – aften n steps

x0=(
1
0
0
0
)

P=(
q p 0 0
q 0 p 0
0 q 0 p
0 0 q p

)



6

Markov chains: discrete example

Phil Hooker, the University of Edinburgh UK
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Markov chains: ergodicity
● For Markov chains ergodic hypothesis has a form of a 

theorem
● For any irreducible and aperiodic Markov chain

∃ lim
n→∞

Pn=A

● Irreducible: one may reach any state starting from any other

P=(
0.3 0.7 0 0
0.2 0.8 0 0
0 0 0.6 0.4
0 0 0.9 0.1

) P=(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)reducible periodic
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Markov chains: ergodicity

● All columns of the matrix A are the same (vector α)
● For any starting vector x:

∃ lim
n→∞

Pn=A

α=(
α 0

α1

α 2

α 3
)

∃ lim
n→∞

Pnx=α

Pα=α
● α – equilibrium distribution of the Markov chain
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Markov Chain Monte Carlo

● Metropolis-Hastings algorithm, 1953
● The idea of the method:

– Construct a Markov chain for which the equilibrium 
distribution is the posterior probability

ρ(M )∼P(M|obs )1 /T

● T – temperature, 1 by default
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Metropolis-Hastings algorithm
● The transition to the new state is two-stage:

– random step to another point M → M’
– accept new state or stay at M

● Transition probability is defined as a product
p(M→M ')=step(M→M ' )accept (M→M ' )

● step is symmetric

accept (M→M ')={1 ,if ρ(M ')>ρ(M )
ρ(M ')/ ρ(M ) , else}

p(M→M ')=step(M→M ' )accept (M→M ' )

step (M→M ')=step(M '→M )
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Metropolis-Hastings algorithm
● The detailed equilibrium condition

● Using the equations from the previous slide

accept (M→M ')={1 ,if ρ(M ')>ρ(M )
ρ(M ')/ ρ(M ) , else}

ρeq (M ) p (M→M ' )=ρ eq(M ') p(M '→M )

step (M→M ')=step(M '→M )

ρeq (M )step(M→M ')accept (M→M ')=ρ eq(M ')step(M '→M ) accept(M '→M )

ρeq (M )
ρeq (M ')

=
ρ (M )
ρ (M ' )

● Arrive to:
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Example: Markov chains from
Planck experiment

Planck Legacy Archive, COM_CosmoParams_base_planck_lowl_R1.10.tar.gz

Note: first column – weight, how long the chain stayed in the state



13

MCMC: marginal distributions

● Finally, there is a chain {m1
a
,..mk

a}, k – number of parameter, 
a – number of step

● We need 2D marginal distribution for ml,mq
● Q: How to get them?
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MCMC: marginal distributions

● Finally, there is a chain {m1
a
,..mk

a}, k – number of parameter, 
a – number of step

● We need 2D marginal distribution for ml,mq
● Q: How to get them?
● A: no need to integrate, just take these parameters from the 

chain and ignore others {ml
amq

a}
● Calculate the distribution of {ml

amq
a}
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Demonstration by Chi Feng

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=Ran
domWalkMH&target=banana

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana
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MCMC: final notes
● Multiple chains are generated simultaneously
● When the chain is started, its states may be far from 

equilibrium
– remove first “warm up” part of the chain

● Several methods exist to test the chain for convergence. 
One of them is the Gelman-Rubin statistic

(Statistical Science, 7, 4 (1992) 457)
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MCMC: final notes
● If the subspace of good models is not simply connected, the 

chain will not move from one to another part
– Train several networks with different temperatures in 

parallel and allow switching states between them
d’Avigneau et al., Anytime parallel tempering, Statistics and 

Computing (2021) 31:74
● For some models it’s easy to make step along some of the 

parameters and hard along others. E.g. for CMB is easy to 
change overall normalization.
– Slow/fast optimization: make one slow step and then 

multiple fast steps
● Packages are available for MCMC: PyMC, Stan (PyStan)
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Takeout from lecture 3
● Markov chain is the stochastic process without memory
● Ergodic assertion may be proved for Markov chains
● Metropolis-Hastings algorithm: construct Markov chain with the 

equilibrium distribution proportional to posterior probability
● There are convergence criteria for the Markov chain (Gelman-

Rubin statistic is one of them)
● Given the Markov chain, marginalized distributions may be 

obtained without integration (by ignoring unnecessary 
variables)
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Task for self-check
● Use the list of Fermi LAT photons and exposure from 
data directory at Yandex disk.

● Construct a model of gamma-ray radiation with two 
sources:
– Isotropic flux
– Constant flux in a circle with

a radius of 1o around Crab
● Calculate likelihood and posterior
probability distribution

● Implement MCMC and plot posterior
distributions of the parameters
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Task for self-check
● Make the model more complicated:

– Include the flux near Galactic plane
– In addition to Crab, add another source with both 

the flux and the coordinates as free parameters
● Implement MCMC and plot posterior marginal
distributions of the parameters

● (*) test the chain for convergence
● Add 2 free sources to the model,
add 100 free sources
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Hands-on session
● Download the code
● https://disk.yandex.ru/d/bPrpOq2Z-oJIOw
● Run jupyter notebook
● Go through exercises in the notebook

https://disk.yandex.ru/d/bPrpOq2Z-oJIOw
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Thank you!
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Backup slides
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