Origin of the most energetic particles in the Universe

E.V. Derishev

Institute of Applied Physics Nizhny Novgorod, Russia

Particles and Cosmology - 2025

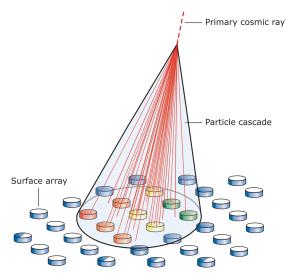
при поддержке гранта РНФ № 24-12-00457

< □ > < /□ >

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 1 / 27


Lecture 1

1 Review of observational data

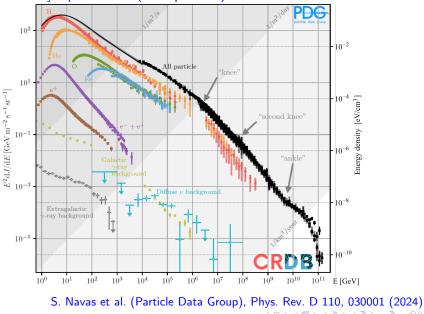
Extensive air shower

Cosmic Rays discovered by Victor Hess in 1912

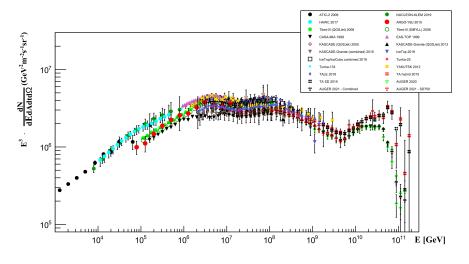
Primary particle hits atmosphere

lots of secondaries detected on ground

from Bauleo & Martino, Nature 2009

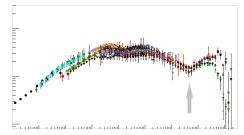

E.V. Derishev (IAP RAS)

Pierre Auger Observatory


イロト イヨト イヨト イヨト

Cosmic Ray spectrum (all species)

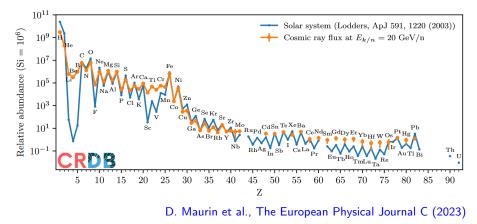
E.V. Derishev (IAP RAS)


Cosmic Ray spectrum (baryons and nuclei)

Di Sciascio, Appl. Sci. 2022

< ロ > < 同 > < 回 > < 回 >

Two components in the Cosmic Ray distribution



Lower-energy (likely galactic) • $E < 5 \times 10^{18}$ eV • energy density ≈ 0.3 eV/cm³

Higher-energy (likely extragalactic)

- $E > 5 \times 10^{18} \text{ eV}$
- energy density $\approx 10^{-8} \text{ eV/cm}^3$

Cosmic Ray abundances

Lithium, Beryllium and Boron nuclei in Cosmic Rays are almost entirely of secondary origin

E.V. Derishev (IAP RAS)

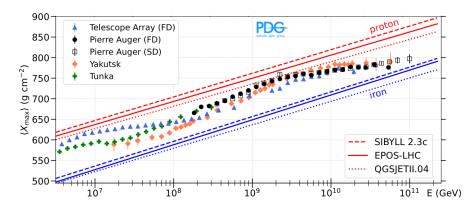
Most energetic particles

Nuclei spallation and CR isotopic clocks

 ^{12}C , $^{16}O + p \rightarrow ^{9}Be$, $^{10}Be +$ fragments

⁹Be is stable

 ^{10}Be half-life is $T_{1/2} = 1.39 \times 10^6$ yr (decays into ^{10}B)


Be/O (or *Be/C*) ratio measures grammage, $X = \int \rho \, d\ell$ • traversed garammage $X = 5 \div 7 \, \text{g/cm}^2$ (at ~ 250 MeV/nucleon)

 ${}^{10}Be/{}^{9}Be$ (or ${}^{10}Be/{}^{10}B$) ratio measures age

• residence time $t_{\rm res} \sim 15$ Myr (2.5 \div 50 Myr)

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cosmic Ray composition at highest energies

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Note:

direct measurement of cross-sections is possible only up to 10^8 GeV (LHC)

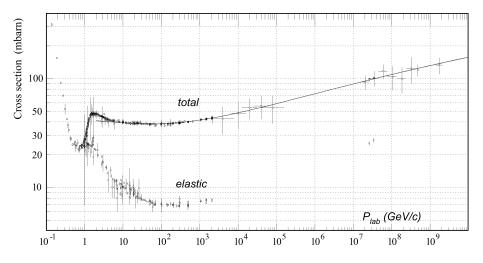
< //2 ▶ < ∃ ▶

Confinement by Galactic magnetic field

Lower-energy Cosmic Rays diffuse out of the disc The diffusion is governed by small-scale turbulent magnetic field

Injection spectrum at the galactic sources $N_E \propto E^{-\gamma}$ transforms into observed spectrum $N_E \propto E^{-\gamma-\delta}$ ($\gamma + \delta \approx 2.7$) if escape time scales as $t_{esc} \propto E^{-\delta}$

- Bohm-type $\delta = 1$
- Kolmogorov-type $\delta = 1/3$
- Kreichnan-type $\delta = 1/2$


Deflection by Galactic magnetic field

- ullet large-scale magnetic field strength in Galactic disk $\sim 3 \mu {
 m G}$
- thickness of Galactic disk \sim 300 parsec
- \bullet above $\sim 2 \times 10^{19}$ eV all Cosmic Rays are not confined in the disc
- extragalactic Cosmic Rays deflect by an angle $\theta_{
 m defl} \sim Z/E_{18}$

Arrival directions of the highest-energy CRs ($\gtrsim 10^{20}$ eV) point towards sources with less than 15° deviation even for iron nuclei (less than 1° for protons)

(日) (同) (日) (日) (日)

proton-proton cross-section

Olive et al. (Particle Data Group), Chin. Phys. C (2014)

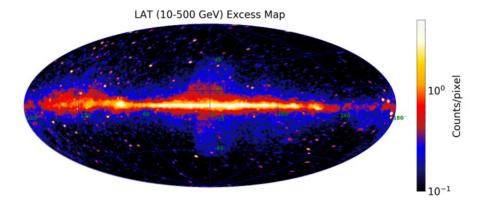
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Interaction of Cosmic Rays with matter

pp reaction $p + p \rightarrow 2$ nucleons + pions (main channel) cross-section ≈ 30 mbarn, almost independent of energy in GeV-TeV range

Three branches with approx. equal probabilities, π^0, π^+, π^-

$$\pi^{0} \rightarrow 2\gamma \qquad \begin{array}{c} \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} & \pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu} \\ \mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e} & \mu^{-} \rightarrow e^{-} + \nu_{\mu} + \bar{\nu}_{e} \end{array}$$


energy shares in secondaries

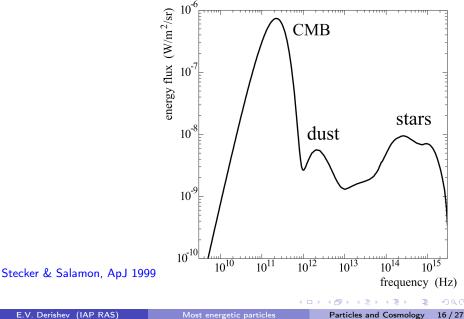
- (1/6): electrons and positrons
- (1/3): photons
- (1/2): neutrinos \leftarrow source of astrophysical neutrinos (1 of 2)

Each of these particles has energy $\ \sim 0.1$ of the primary's energy

< □ > < 同 > < 回 > < 回 > < 回 >

GeV sky map

Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. (2022)


E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 15 / 27

< 47 ▶

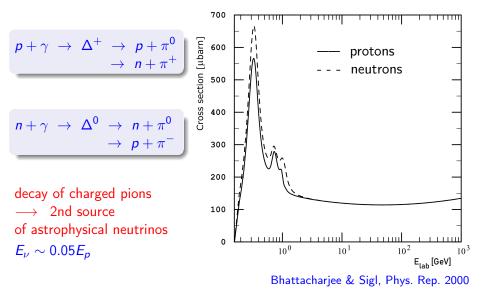
Extragalactic background light

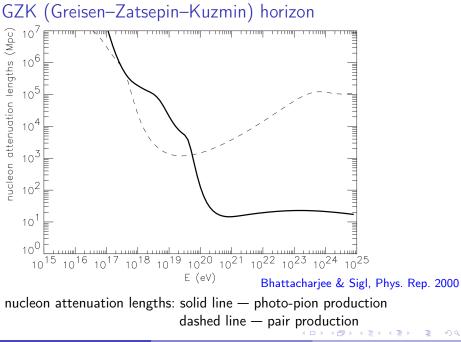
E.V. Derishev (IAP RAS)

Energy loss channels

 e^-e^+ -pair production (Bethe-Heitler process) $\gamma + \text{El. field} \rightarrow e^- + e^+ \qquad \begin{array}{c} \text{cross-section } \sigma_{pp} \approx 1.5 \ Z^2 \ \text{mbarn} \\ \text{inelastisity} \ \epsilon \approx 10^{-4} \ A^{-1} \end{array}$

 $\begin{array}{ll} \mbox{photodisintegration} & & \\ \gamma + {}^{56}\mbox{\it Fe} \rightarrow & & \\ \rightarrow \mbox{ lighter nucleus + nucleon(s)} & & \mbox{inelastisity} & \epsilon \approx 0.02 \end{array}$

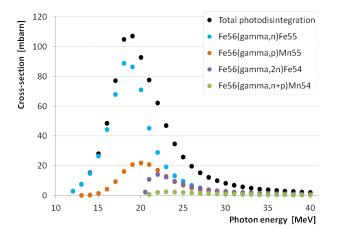

photo-pion reaction $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0$ cross-section $\sigma_{\pi} \approx 0.6$ mbarn $\rightarrow n + \pi^+$ inelastisity $\epsilon \approx 0.2$


Inelastisity ϵ — fraction of energy lost per interaction

E.V. Derishev (IAP RAS)

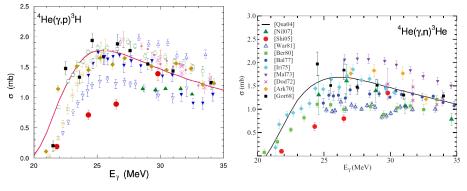
Most energetic particles

Photo-pion reactions



E.V. Derishev (IAP RAS)

Most energetic particles


Particles and Cosmology 19 / 27

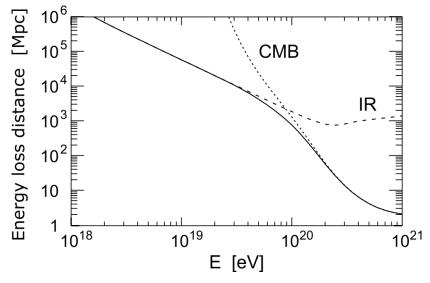
Giant Dipole Resonance photo-disintegration

Borodina et al. (2000)

Photo-disintegration of Helium

Raut et al., Phys Rev Lett (2012)

Tornow et al., Phys Rev C (2012)


For He nuclei, photodisintegration dominates over pair production losses

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 21 / 27

Iron nuclei losses

Epele & Roulet, Phys. Rev. Lett. 1998

22 / 27

Cosmic Ray horizon at $E = 10^{20}$ eV

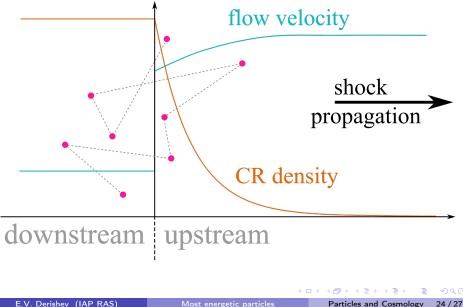
protons

Attenuation distance ~ 100 Mpc (due to photo-pion losses) • ~ 30 AGNs and a few galaxy clusters are within this distance

Helium nuclei

Attenuation distance $\sim 2 \text{ Mpc}$ (due to photodisintegration)

- the nearest currently active AGN (Cen A) is at $3 \div 4$ Mpc
- \bullet the nearest galaxy cluster (the Virgo Cluster) is at $~15 \div 20 \mbox{ Mpc}$


Iron nuclei

Attenuation distance \sim 700 Mpc (due to photodisintegration)

 $\bullet~\sim 10^4$ AGNs and $~\sim 300\,$ galaxy clusters are within this distance

イロト 不得下 イヨト イヨト 二日

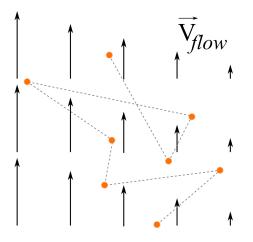
Schematic view of particle-accelerating shock

E.V. Derishev (IAP RAS)

Particles and Cosmology

Diffusive shock acceleration

Flow's work done on CRs $P_{flow} = \left(\frac{1}{3}E N_{\rm E} \,\mathrm{d}E\right) V_{\rm sh}$ Power of acceleration $P_{acc} = \dot{E} \left(N_{\rm E} \, {\rm d}E \, \lambda \right)$


Acceleration rate

$$\dot{E} = rac{1}{3} rac{EV_{
m sh}}{\lambda} = rac{1}{3} rac{EV_{
m sh}^2}{\mathcal{D}} \left(= rac{V_{
m sh}^2}{c^2} qBc
ight.$$
 with Bohm diffusion

Energy distribution — power-law $N_{\rm E} \propto E^{-\alpha}$ with index $\alpha = \frac{(V_u/V_d) + 2}{(V_u/V_d) - 1}$

In strong non-relativistic shocks compression ratio is $V_u/V_d = 4$ and $\alpha = 2$

Acceleration in shear flows

 $\begin{aligned} &\text{Acceleration rate} \\ &\dot{E}\sim \frac{(\nabla V_{\rm fl}\lambda)^2}{c^2}qBc\propto E^2 \end{aligned}$

innate problem: acceleration takes too long at lower energies ($t_{\rm acc} \propto E^{-1}$)

more like an energy-boost process rather than standalone acceleration mechanism

Summary 1

- Cosmic Rays extend in energy beyond 10^{20} eV.
- There are two components: lower-energy, likely Galactic, with $E_{_{
 m CR}} < 5 \times 10^{18}$ eV higher-energy, likely extragalactic, with $E_{_{
 m CR}} > 5 \times 10^{18}$ eV
- The highest-energy cosmic rays ($E_{_{\rm CR}}\gtrsim 10^{20}$ eV) must come from nearby sources
- There are two common (diffusive) acceleration mechanisms: shock acceleration shear-flow acceleration acceleration (energy boost)
- One more mechanism will be discussed later