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Update to lecture 1.
Definition of discovery 

● As you have noticed, a simplified definition of the discovery 
was shown yesterday

● It is possible to discover something that was not searched 
for and even something for which there is no model

● There are methods developed to search for unknown new 
physics.
– General name for these methods is “semi-supervised 

anomaly detection”
– These methods use M0 model, but no M model

● Larger statistics is required for discoveries of this type
M. Kuusela et al., J.Phys.Conf.Ser. 368 (2012) 012032; V. Belis et al., Rev.Phys. 12 (2024) 100091
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Update to lecture 1.
the opposite side: Blinding 

● When searching for anomalies, one is exposed to  
fluctuations of different random processes

● These fluctuations make up a large background for a search
● To avoid that, the blinding technique is used
● Blinding practically means that the scientists do not have 

access to the data before certain point (e.g. Higgs@LHC)
1) The work is performed with simulations (M0 and M). Then M 

is fixed based on simulations and published
2) Unblinding: the data are tested against M
● The data may be required for optimization on step 1. A part 

of data is used, which is then excluded on step 2. 
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Return to randomness:
Gaussian random variables

● Multivariate Gaussian distribution

f (x)= 1
(2 π )n /2√det C

exp(−1
2
(x−b)TC−1( x−b ))

● b – mean, C — covariance matrix
● For random Gaussian x with b=0 and any matrix A

Tr A=⟨xT AC−1x ⟩
● For 
● For random Gaussian x with b=0 and any matrix A
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Return to randomness:
Gaussian random variables

● Isserlis-Wick theorem for calculating the mean of the product 
of Gaussian variables
– Isserlis – 1918 (mathematics)
– Wick – 1950 (particle physics)

● Mean of the product of the Gaussian variables (assume b=0) 
is the sum of products of means over all possible pairings

● Example:
⟨ x1 x2 x3 x4 ⟩=⟨ x1 x2⟩ ⟨x3 x4 ⟩+⟨x1 x3⟩ ⟨ x2 x4⟩+⟨ x1 x4 ⟩ ⟨ x2 x3 ⟩

● As a direct consequence:
⟨ x4⟩=3 ⟨x2 ⟩ ⟨ x2⟩=3σ 4
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Return to randomness:
Gaussian random variables

● For n Gaussian random variables xi with zero mean one may 
define

χ 2=∑
i=0

n−1

x i
2

● The χ2 distribution
depends on n
(called d.o.f.)
and is widely used

Particle Data Group
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Frequentist      vs       Bayesian

The future is not set.
There is no fate but what we 
make for ourselves.

The past, present and future are not set.
The fate is a random hypothesis.
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Bayesian approach
● Both model (M) and event (obs) are random

● P(M) – prior
● P(obs) – normalization constant we neglect at this step and 

recover later (by normalizing posterior)

P(M|obs )=
P( obs|M )P (M )

P(obs)

P(M|obs )∼P (obs|M )P(M )



9

Bayesian approach

● P(obs|M) is called likelihood (M,obs)𝐿
● P(M|obs) – posterior probability
● One often confuses the likelihood and the posterior 

probability.
● Q: What is the difference between them?

P(M|obs )∼P (obs|M )P(M )
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Bayesian approach

● P(obs|M) is called likelihood (M,obs)𝐿
● P(M|obs) – posterior probability
● One often confuses the likelihood and the posterior 

probability. 
● Q: What is the difference between them?
● A: These variables have a meaning of probability in different 

probability spaces

P(M|obs )∼P (obs|M )P(M )
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Bayesian approach

● The likelihood P(obs|M) is a probability in the space of 
random events (it is the probability in Frequentist’s 
approach)

● The posterior probability P(M|obs) is a probability in the 
space of random models

P(M|obs )∼P (obs|M )P(M )
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Bayesian approach

● Lost in spaces? Luckily, there is a clear way to identify the 
probability and it’s space.

● Normalization condition 

P(M|obs )∼P (obs|M )P(M )

∫
M

P(M|obs)=1

∫
obs

P( obs|M )=1
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Bayesian approach:
work with posterior probability

● Let us assume that M is parametrized by the K variables {mk}
● Normalization condition may be written explicitly

∬
m1 ..mK

P(M|obs)dM=1

● Suppose we are exclusively interested in one or two 
parameters of the model. We calculate marginal distribution

p(ml)=
∬

m1 ..mK∖m l

P(M|obs )dM

∬
m1 ..mK

P(M|obs)dM
p(ml ,mq)=

∬
m1 ..mK ∖m lmq

P(M|obs)dM

∬
m1 ..m K

P(M|obs )dM
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Bayesian approach example:
Planck 2018 results

Planck Collaboration, A&A 641, A6 (2020)

● These are 2D and 1D marginal distributions of posterior
● 1σ (2σ) contours – lines of equal probability, which include 68%, 

(95%) of the integral of posterior probability
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Testing hypotheses:
Bayesian approach
1) Define the space of models M
2) Define the likelihood function P(obs|M)
3) Define the prior P(M)
4) Calculate the posterior probability
5) Calculate marginal 1D or 2D distribution of the posterior
6) Plot the lines of equal probability, which include 68%, (95%) 

of the integral of posterior probability. These are the 
constraint we obtain
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Takeout 2.1
● Gaussian random variables have unique properties and are widely 

used in the analysis
● Posterior probability and likelihood have a meaning of probability in 

different probability spaces
● The parameters of the models are studied in the Bayesian approach 

with the marginal distributions of the posterior probability
● The constraints on the parameters are obtained with the line of equal 

probability
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Model example: gamma-ray
sky observed by Fermi LAT 

● Fermi LAT is a space gamma-ray 
telescope

● We will use the publicly available 
list of the photons and exposure 
to test the radiation models

● Fermi LAT observes photons 
starting from 100 MeV

● We’ll constrain ourselves with the 
gamma-rays above 10 GeV for 
smaller data and computation 
volume Fermi LAT Collaboration, E>10 GeV
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Model example: Fermi LAT
● The model of the gamma-ray emission is defined as a 

function on the position of the sphere f(Ω) in cm-2 s-1 sr-1

● Will work in Galactic coordinates and use Ω for (l,b)
● We have an exposure X(Ω) of the experiment as a function of 

Ω for energy E=10 GeV in cm2 s2

● The predicted probability density ρ(Ω) = f(Ω)X(Ω)
● The next step is to construct a likelihood
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HEALPix:
Pixelisation of the sphere

● HEALPix — Hierarchical Equal Area 
isoLatitude Pixelisation of a sphere

● Two types: ring or nested
● Npix = 12 nside2

from healpy.pixelfunc:

  pix2ang(nside, ipix[, nest, lonlat])

  ang2pix(nside, theta, phi[, nest, lonlat])
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Model example: Fermi LAT
Likelihood

● We have pixels with area ΔΩ
● Expect mi = ρ(Ω) ΔΩ events in a pixel
● Observe ni events in a pixel
● Q: What is a likelihood?
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Model example: Fermi LAT
Likelihood

● We have pixels with area ΔΩ
● Expect mi = ρ(Ω) ΔΩ events in a pixel
● Observe ni events in a pixel
● Q: What is a likelihood?
● A: Binned likelihood is a product of Poisson distributions:

P( obs|M )=∏
i
W (mi ,n i)=∏

i

mi
ni

ni!
exp(−mi)=exp (−∑ mi)∏

i

mi
ni

n i!



22

Model example: Fermi LAT
Likelihood

● Expect mi = ρ(Ωi) ΔΩ, observe ni events in a pixel
● Binned likelihood is a product of Poisson distributions:

P( obs|M )=∏
i
W (mi ,n i)=∏

i

mi
ni

ni!
exp(−mi)=exp (−∑ mi)∏

i

mi
ni

n i!
● Consider the limit ΔΩ → 0, then ni is either 0 or 1
● If ni = 0, the term in a product equals to 1, keep only ni =1
● Let  Ωa be a coordinate of a-th event, a=1..N
● We arrive at unbinned likelihood

P( obs|M )=exp(−∑
i
ρ(Ωi)ΔΩ)∏a (ρ(Ωa)ΔΩ)
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Model example: Fermi LAT
Likelihood

● Removing constant normalization factor we arrive to final 
version of unbinned likelihood

P( obs|M )=exp(−∑
i
ρ(Ωi)ΔΩ)∏a (ρ(Ωa)ΔΩ)

P( obs|M )=exp(−∫Ω ρ(Ω)dΩ)ΔΩN∏
a
ρ (Ωa)

P( obs|M )=exp(−∫Ω ρ(Ω)dΩ)∏a ρ(Ωa)
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Likelihood ratio test
● Suppose we have two models M0 with N parameters and M1 

with N+q parameters
● We have best fit likelihoods for M0 and M1

λ=−2 ( ln (L (M 0))−ln (L(M 1)))
● If the L improvement is due to random fluctuation, λ is 

distributed according to χ2 distribution with q degrees of 
freedom

● If λ value is improbable according to χ2 distribution, the model 
extension is physics (e.g. new source exists)

● Confidence level is obtained from the above probability
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Takeout 2.2
● One may use Bayesian approach to study gamma-ray sky
● The sky may be split into the pixels with the HEALPix library 

(healpy)
● Two types of likelihood may be constructed (binned and 

unbinned)
● The likelihood ratio test may be used to compare models with 

different number of parameters
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Task for self-check
● Download the list of Fermi LAT photons and exposure 
from data directory at Yandex disk 

fermi_photons_10GeV.dat - photons, registered by Fermi LAT with energy 
greater than 10 GeV

Time period:

2008-08-04T15:43:36.4941 - 2024-08-09T03:08:40.9339

File format (column description):

1. E, MeV

2. l, deg - Galactic longitude

3. b, deg - Galactic latitude

4. MET, s - photon arrival time
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Task for self-check
● Download the exposure of Fermi LAT at 10 GeV 
fermi_expo_10GeV.dat - exposure of Fermi LAT telescope for the total time 
period given below and energy equal to 10 GeV

Time period:

2008-08-04T15:43:36.4941 - 2024-08-09T03:08:40.9339

File format (column description):

1. l, deg - Galactic longitude

2. b, deg - Galactic latitude

3. exposure, cm^2 s
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Task for self-check
● Construct a model of gamma-ray radiation with two 
sources:
– Isotropic flux
– Constant flux in a circle with

a radius of 1o around Crab
● Calculate likelihood and posterior
probability distribution

● Estimate the parameters of the model
and significance of the Crab observation

● (*) extend the model making the source
coordinates parameters of the model
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Hands-on session
● Download the code
● https://disk.yandex.ru/d/bPrpOq2Z-oJIOw
● Run jupyter notebook
● Go through exercises in the notebook

https://disk.yandex.ru/d/bPrpOq2Z-oJIOw
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Thank you!
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Backup slides
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