Origin of the most energetic particles in the Universe

E.V. Derishev

Institute of Applied Physics Nizhny Novgorod, Russia

Particles and Cosmology - 2025

при поддержке гранта РНФ № 24-12-00457

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 1 / 24

Lecture 2

- Galactic
- Extragalactic

2 Fundamental constraints for acceleration sites

More realistic: escape-limited and loss-limited acceleration

Summary of Lecture 1

- Cosmic Rays extend in energy beyond 10^{20} eV.
- There are two components: lower-energy, likely Galactic, with $E_{_{
 m CR}} < 5 \times 10^{18}$ eV higher-energy, likely extragalactic, with $E_{_{
 m CR}} > 5 \times 10^{18}$ eV
- The highest-energy cosmic rays ($E_{_{\rm CR}}\gtrsim 10^{20}$ eV) must come from nearby sources
- Two common acceleration mechanisms: shock acceleration shear-flow acceleration acceleration (energy boost)

Lower-energy Cosmic Rays: power budget

Source injection power $~\sim 0.8 \times 10^{48} ~\text{erg/yr}~(\sim 2.5 \times 10^{40} ~\text{erg/s})$

Energy density of lower-energy CRs $\sim 0.3 \text{ eV/cm}^3$ in the volume containing $\sim 10^{10} M_{\odot}$ of gas with average density $\sim 0.5 \text{ cm}^{-3}$

 \Rightarrow total energy of these CRs is $\sim 1.2 \times 10^{55}$ erg , replenished once in $t_{
m res} \sim 15$ Myr

Possible sources

- Supernovae $\sim 2 \times 10^{49} \text{ erg/yr}$ (one SN per 50 yr) — idea suggested ca. 1955 by several authors
- \bullet Pulsars ($\lesssim 0.1$ of SN power) $\,-\,$ could be local contributors
- supermassive black hole at Galactic center, Sgr A*, now quiet, had accretion power $\geq 2 \times 10^{40}$ erg/s in the recent past

イロト 不得 トイヨト イヨト 二日

Supernova remnant SN 1006

HESS Collaboration, A&A 2010

< 回 ト く ヨ ト く ヨ ト

Chandra 2013

Most energetic particles

E.V. Derishev (IAP RAS)

Supernova remnant RX J1713.7-3946

XMM-Newton (Tateishi et al., ApJ 2021)

red — 0.2–1.0 keV green — 1.0–2.0 keV blue — 2.0–4.5 keV

HESS Collaboration, A&A 2018

Tycho supernova remnant

Chandra 2011

E.V. Derishev (IAP RAS)

Most energetic particles

э

イロト イポト イヨト イヨト

Spectral model for Cas A supernova remnant

Crab pulsar's X-ray nebula

< 47 ▶

NASA/CXC/ASU/Hester et al.

E.V. Derishev (IAP RAS)

-Particles and Cosmology 9/24 Crab pulsar spectrum extends to PeV

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 10 / 24

Higher-energy Cosmic Rays: power budget

Source power $\sim 3 \times 10^{43} \text{ erg/yr/Mpc}^3$ (efficiency $\sim 0.6 \text{ eV/nucleon}$)

Energy density of extragalactic CRs $\sim 10^{-8} \text{ eV/cm}^3$, accumulated over Hubble time Universe's critical density is $\approx 5.6 \text{ keV/cm}^3$, a fraction $\Omega_{\text{stars}} \approx 0.003$ of which is in galaxies (mostly in form of stars)

 $\Rightarrow~$ extragalactic CRs comprise $~\sim0.6\times10^{-10}~$ of the matter's rest energy

Possible sources

- Active Galactic Nuclei life-time average efficiency $\sim 50 \ \rm keV/nucleon$ assuming $M_{_{\rm BH}}/M_* \sim 10^{-3} \,$ SMBH to host galaxy mass ratio
- Gamma-Ray Bursts. Need $E_{_{
 m GRB}} > 2 \times 10^{52}$ erg (rate $\sim 1.5 \ {
 m Gpc}^{-3} {
 m yr}^{-1}$)
- ullet accretion onto galaxy clusters has efficiency $\,\sim 10$ keV/nucleon

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Centaurus A — the nearest active galaxy

optical (true color) submillimetre (orange) X-ray (blue) ESO/WFI MPIfR/ESO/APEX/A.Weiss et al. NASA/CXC/CfA/R.Kraft et al.

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 12 / 24

Schematic view of Active Galactic Nucleus

after Beckmann & Shrader, PoS 2012

Gamma Ray Burst

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 14 / 24

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ

Gamma Ray Burst

Piran, Nature (2003)

External shock decelerates from $\ \ \Gamma_0\sim 500$

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 15 / 24

Fundamental constraints for acceleration sites

 Particles should be confined with the acceleration site E_{max} < qBR — Hillas criterion (due to Greisen, 1965)

lower limit on magnetic energy in the accelerator

$$W_{\rm m} > rac{R}{6} \left(rac{E_{
m max}}{q}
ight)^2$$

2 Energy gain rate $\dot{E} = \eta q B c$ should balance

at least the minimum possible losses — curvature radiation

$$\Rightarrow \quad \eta q B c > \dot{E}_{
m rad} = rac{2}{3} \left(rac{E_{
m max}}{mc^2}
ight)^4 rac{q^2}{R^2} c$$

lower limit on magnetic energy in the accelerator

$$W_{\rm m} > \frac{2}{27} \frac{q^2}{R} \left(\frac{E_{\rm max}}{mc^2}\right)^8 \frac{1}{\eta^2}$$

E.V. Derishev (IAP RAS)

< 17 ×

Fundamental constraints for acceleration sites

Equating the two lower limits on the the amount of electromagnetic energy stored in the acceleration region we find the optimal (the minimum possible) estimate: $W_{\rm m}^{\rm (opt)} \simeq \frac{1}{9 \eta} \frac{E_{\rm max}^5}{(mc^2)^4}$

The corresponding optimal size is

The optimal magnetic field strength is

 $R^{(\text{opt})} \simeq \frac{2}{3n} \frac{q^2 E_{\text{max}}^3}{(mc^2)^4}$

$$B^{(\mathrm{opt})} \simeq rac{3}{2} \eta \, rac{\left(mc^2
ight)^4}{q^3 E_{\mathrm{max}}^2}$$

Fundamental constraints for acceleration sites

Constraints for relativistically-moving accelerators

Lorentz transformations $E = \Gamma E'$, $W = \Gamma W'$, $B = \Gamma B'$ primed quantities are measured in the comoving frame, I is Lorentz factor of bulk motion $W_{\rm m}^{\rm (opt)} \simeq \frac{1}{9 \Gamma^4} \frac{1}{n} \frac{E_{\rm max}^5}{(mc^2)^4}$ The minimum possible magnetic energy: $R^{\prime(\text{opt})} \simeq \frac{2}{3\Gamma^3} \frac{1}{n} \frac{q^2 E_{\text{max}}^3}{(mc^2)^4}$

The corresponding optimal size is

The optimal magnetic field strength is

$$B^{\prime
m (opt)} \simeq rac{3\,\Gamma^2}{2}\,\eta\,rac{\left(mc^2
ight)^4}{q^3 E_{
m max}^2}$$

< 回 > < 三 > < 三 >

Constraints for relativistically-moving accelerators

E.V. Derishev (IAP RAS)

Possible UHECR ($E_{\rm cr} \gtrsim 10^{20}$ eV) acceleration sites

Non-relativistic objects

- Accretion shocks in clusters of galaxies
- Giant radio lobes
- Accretion discs around supermassive black holes

Objects with relativistic jets/shocks (reviewed in the next lectures)

- Jets in Active Galactic Nuclei
- Gamma-Ray Bursts (note tough constraint on the energy efficiency)

Escape-limited acceleration

Equation for maximum energy $E_{\rm max} = \dot{E} t_{\rm esc} = \eta (qB)^2 \frac{R^2}{E_{\rm max}}$

 $E_{\rm max} = \sqrt{\eta} \, q B R$

similar to Hillas criterion, but smaller

E.V. Derishev (IAP RAS)

Most energetic particles

Particles and Cosmology 22 / 24

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト …… ヨ

Loss-limited acceleration

Input

- Available acceleration time is limited by attenuation distance D_{att} : $t_{\text{acc}} < t_{\text{max}} = D_{\text{att}}/c$
- acceleration rate $\dot{E} = \eta q B c$

$$E_{
m max} = \dot{E} t_{
m max} = \eta \, q B D_{
m att}$$

3

- ∢ ∃ ▶

Summary 2

- Several object types meet fundamental criteria for proton acceleration up to 10^{20} eV and even more so for iron nuclei
- Considering more realistic (actually model-dependent) limitations may result in substantially lower energy limit for Cosmic Rays