Lecture Courses

Nataliya Porayko (SAI MSU): Gravitational waves in cosmology and astrophysics

     Lectures

  • Introduction. Linearised theory of gravitational waves. Harmonic and TT gauges. Polarisation of gravitational waves. Effect of gravitational waves on the test mass.
  • Sources of gravitational waves. Generation of gravitational waves in linearised theory. Astrophysical sources of gravitational waves.
  • Cosmological gravitational wave background. GWs in expanding Universe. Mathematical description of stochastic GW background and its sources in the early Universe.
  • GW detectors. Response of ground-based interferometers. Response of pulsar timing arrays.

     Recomended literature 

  • M. Maggiore, 2008, Gravitational Waves, Oxford University Press
  • C. Misner, K. Thorne, J. Wheeler, 1973, Freeman and Company
  • C. Caprini, D.G. Figueroa, 2018, Classical and Quantum Gravity, 35, 163001
  • B.F. Schutz, F. Ricci, 2010, arXiv:1005.4735

 

Mikhail Volkov (U. Tours): Topological objects in early Universe

     Lectures

  • Kinks and domain walls
  • Derrick’s theorem, textures
  • Skyrmeons
  • Magnetic vortices, cosmic strings
  • Magnetic monopoles

     Recomended literature 

  • R. Rajaraman "Solitons and Instantons"
  • N.Manton, P.Sutcliff "Topological solitons"

 

Sergey Demidov (INR RAS): FIMPs: models, cosmology and phenomenology

     Lectures

  1. FIMPs vs WIMPs as dark matter candidates
  2. BSM models of FIMPs
  3. Searches for FIMPs at collider and beam dump experiments

     Recomended literature 

  • V. Rubakov & D. Gorbunov "Introduction to the Theory of the Early Universe"
  • M. E.Peskin, D. V. Schroeder "An Introduction to Quantum Field Theory"

 

Alexander Bednyakov (JINR): Effective potential in quantum field theory and metastability of electroweak vacuum

      Lectures

  1. Effective action and effective potential
  2. Computing effective potential at one loop and beyond
  3. Effective potential in the Standard Model
  4. Stability of the electroweak vacuum
  5. False vacuum decay and the Universe's lifetime

     Recomended literature 

  • M. E.Peskin, D. V. Schroeder, "An Introduction to Quantum Field Theory", Part II, Chapters 9-12
  • V.A. Rubakov "Classical Theory of Gauge Fields,"Part II, Chapters 11-12,  Appendix A.1

     Addditional literature
 

  • Marc Sher, "Electroweak Higgs Potentials and Vacuum Stability", Phys.Rept. 179 (1989) 273-418
  • D. Buttazzo et al. "Investigating the near-criticality of the Higgs boson," JHEP 12 (2013) 089 [arXiv:1307.3536]
  • A.Andreassen, D.Farhi,  M.D. Schwartz, "Consistent Use of Effective Potentials,,'  Phys.Rev.D 91 (2015) 1, 016009 [arXiv:1408.0287]]
  • A.Andreassen, D.Farhi, W. Frost, M.D. Schwartz, "Precision decay ratecalculations in quantum field theory,'' Phys.Rev.D 95 (2017) 8, 085011 ,[arXiv:1604.0609]
     

 

Edvard Musaev (JINR, MIPT):  Supergravity and particle physics

     Lectures

  1. General problems of dimensional reduction and moduli stabilization: example of 6 → 4 dimensions and the volume modulus
  2. Indroduction to string theory and supergravity: spectrum of open and closed strings
  3. Dp-branes in string theory and supergravity
  4. Particle physics models from intersecting Dp-branes
  5. Brane-World inflation models
  6. Dimensional reduction on a Calabi-Yau threefold: scalar potential and the KKLT model

    Key concepts required to understand the lectures

  • Differential forms and formalism of exterior derivatives
  • Action of nonlinear Sigma-models
  • Spinors in 4 and 10 dimensions, Lorentz group representetions

    Recomended literature 

  • B.A.Dubrovin, A.T.Fomenko, S.P.Novikov. "Modern Geometry. Methods and Applications"
  • H.Georgi "Lie Algebras in Particle Physics"
  • M.Rausch de Traubenberg "Clifford Algebras in Physics", hep-th/0506011
  • D.Tong "String Theory"